Abstract:We present a perception-driven safety filter that converts each 3D Gaussian Splat (3DGS) into a closed-form forward collision cone, which in turn yields a first-order control barrier function (CBF) embedded within a quadratic program (QP). By exploiting the analytic geometry of splats, our formulation provides a continuous, closed-form representation of collision constraints that is both simple and computationally efficient. Unlike distance-based CBFs, which tend to activate reactively only when an obstacle is already close, our collision-cone CBF activates proactively, allowing the robot to adjust earlier and thereby produce smoother and safer avoidance maneuvers at lower computational cost. We validate the method on a large synthetic scene with approximately 170k splats, where our filter reduces planning time by a factor of 3 and significantly decreased trajectory jerk compared to a state-of-the-art 3DGS planner, while maintaining the same level of safety. The approach is entirely analytic, requires no high-order CBF extensions (HOCBFs), and generalizes naturally to robots with physical extent through a principled Minkowski-sum inflation of the splats. These properties make the method broadly applicable to real-time navigation in cluttered, perception-derived extreme environments, including space robotics and satellite systems.
Abstract:Since the disruption in LLM technology brought about by the release of GPT-3 and ChatGPT, LLMs have shown remarkable promise in programming-related tasks. While code generation remains a popular field of research, code evaluation using LLMs remains a problem with no conclusive solution. In this paper, we focus on LLM-based code evaluation and attempt to fill in the existing gaps. We propose multi-agentic novel approaches using question-specific rubrics tailored to the problem statement, arguing that these perform better for logical assessment than the existing approaches that use question-agnostic rubrics. To address the lack of suitable evaluation datasets, we introduce two datasets: a Data Structures and Algorithms dataset containing 150 student submissions from a popular Data Structures and Algorithms practice website, and an Object Oriented Programming dataset comprising 80 student submissions from undergraduate computer science courses. In addition to using standard metrics (Spearman Correlation, Cohen's Kappa), we additionally propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment. Our comprehensive analysis demonstrates that question-specific rubrics significantly enhance logical assessment of code in educational settings, providing better feedback aligned with instructional goals beyond mere syntactic correctness.