Abstract:Ensuring that multi-modal content adheres to brand, legal, or platform-specific compliance standards is an increasingly complex challenge across domains. Traditional compliance frameworks typically rely on disjointed, multi-stage pipelines that integrate separate modules for image classification, text extraction, audio transcription, hand-crafted checks, and rule-based merges. This architectural fragmentation increases operational overhead, hampers scalability, and hinders the ability to adapt to dynamic guidelines efficiently. With the emergence of Multimodal Large Language Models (MLLMs), there is growing potential to unify these workflows under a single, general-purpose framework capable of jointly processing visual and textual content. In light of this, we propose Multimodal Parameter Agnostic Compliance Engine (M-PACE), a framework designed for assessing attributes across vision-language inputs in a single pass. As a representative use case, we apply M-PACE to advertisement compliance, demonstrating its ability to evaluate over 15 compliance-related attributes. To support structured evaluation, we introduce a human-annotated benchmark enriched with augmented samples that simulate challenging real-world conditions, including visual obstructions and profanity injection. M-PACE employs a mother-child MLLM setup, demonstrating that a stronger parent MLLM evaluating the outputs of smaller child models can significantly reduce dependence on human reviewers, thereby automating quality control. Our analysis reveals that inference costs reduce by over 31 times, with the most efficient models (Gemini 2.0 Flash as child MLLM selected by mother MLLM) operating at 0.0005 per image, compared to 0.0159 for Gemini 2.5 Pro with comparable accuracy, highlighting the trade-off between cost and output quality achieved in real time by M-PACE in real life deployment over advertising data.
Abstract:Since the disruption in LLM technology brought about by the release of GPT-3 and ChatGPT, LLMs have shown remarkable promise in programming-related tasks. While code generation remains a popular field of research, code evaluation using LLMs remains a problem with no conclusive solution. In this paper, we focus on LLM-based code evaluation and attempt to fill in the existing gaps. We propose multi-agentic novel approaches using question-specific rubrics tailored to the problem statement, arguing that these perform better for logical assessment than the existing approaches that use question-agnostic rubrics. To address the lack of suitable evaluation datasets, we introduce two datasets: a Data Structures and Algorithms dataset containing 150 student submissions from a popular Data Structures and Algorithms practice website, and an Object Oriented Programming dataset comprising 80 student submissions from undergraduate computer science courses. In addition to using standard metrics (Spearman Correlation, Cohen's Kappa), we additionally propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment. Our comprehensive analysis demonstrates that question-specific rubrics significantly enhance logical assessment of code in educational settings, providing better feedback aligned with instructional goals beyond mere syntactic correctness.