Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
Abstract:Learning to segment images purely by relying on the image-text alignment from web data can lead to sub-optimal performance due to noise in the data. The noise comes from the samples where the associated text does not correlate with the image's visual content. Instead of purely relying on the alignment from the noisy data, this paper proposes a novel loss function termed SimCon, which accounts for intra-modal similarities to determine the appropriate set of positive samples to align. Further, using multiple views of the image (created synthetically) for training and combining the SimCon loss with it makes the training more robust. This version of the loss is termed MV-SimCon. The empirical results demonstrate that using the proposed loss function leads to consistent improvements on zero-shot, text supervised semantic segmentation and outperforms state-of-the-art by $+3.0\%$, $+3.3\%$ and $+6.9\%$ on PASCAL VOC, PASCAL Context and MSCOCO, respectively. With test time augmentations, we set a new record by improving these results further to $58.7\%$, $26.6\%$, and $33.3\%$ on PASCAL VOC, PASCAL Context, and MSCOCO, respectively. In addition, using the proposed loss function leads to robust training and faster convergence.
Abstract:The lack of data for information extraction (IE) from semi-structured business documents is a real problem for the IE community. Publications relying on large-scale datasets use only proprietary, unpublished data due to the sensitive nature of such documents. Publicly available datasets are mostly small and domain-specific. The absence of a large-scale public dataset or benchmark hinders the reproducibility and cross-evaluation of published methods. The DocILE 2023 competition, hosted as a lab at the CLEF 2023 conference and as an ICDAR 2023 competition, will run the first major benchmark for the tasks of Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) from business documents. With thousands of annotated real documents from open sources, a hundred thousand of generated synthetic documents, and nearly a million unlabeled documents, the DocILE lab comes with the largest publicly available dataset for KILE and LIR. We are looking forward to contributions from the Computer Vision, Natural Language Processing, Information Retrieval, and other communities. The data, baselines, code and up-to-date information about the lab and competition are available at https://docile.rossum.ai/.
Abstract:Cancer is a leading cause of death in many countries. An early diagnosis of cancer based on biomedical imaging ensures effective treatment and a better prognosis. However, biomedical imaging presents challenges to both clinical institutions and researchers. Physiological anomalies are often characterized by slight abnormalities in individual cells or tissues, making them difficult to detect visually. Traditionally, anomalies are diagnosed by radiologists and pathologists with extensive training. This procedure, however, demands the participation of professionals and incurs a substantial cost. The cost makes large-scale biological image classification impractical. In this study, we provide unique deep neural network designs for multiclass classification of medical images, in particular cancer images. We incorporated transformers into a multiclass framework to take advantage of data-gathering capability and perform more accurate classifications. We evaluated models on publicly accessible datasets using various measures to ensure the reliability of the models. Extensive assessment metrics suggest this method can be used for a multitude of classification tasks.
Abstract:Vision-language models trained with contrastive learning on large-scale noisy data are becoming increasingly popular for zero-shot recognition problems. In this paper we improve the following three aspects of the contrastive pre-training pipeline: dataset noise, model initialization and the training objective. First, we propose a straightforward filtering strategy titled Complexity, Action, and Text-spotting (CAT) that significantly reduces dataset size, while achieving improved performance across zero-shot vision-language tasks. Next, we propose an approach titled Concept Distillation to leverage strong unimodal representations for contrastive training that does not increase training complexity while outperforming prior work. Finally, we modify the traditional contrastive alignment objective, and propose an importance-sampling approach to up-sample the importance of hard-negatives without adding additional complexity. On an extensive zero-shot benchmark of 29 tasks, our Distilled and Hard-negative Training (DiHT) approach improves on 20 tasks compared to the baseline. Furthermore, for few-shot linear probing, we propose a novel approach that bridges the gap between zero-shot and few-shot performance, substantially improving over prior work. Models are available at https://github.com/facebookresearch/diht.
Abstract:We propose the fully differentiable $\nabla$-RANSAC.It predicts the inlier probabilities of the input data points, exploits the predictions in a guided sampler, and estimates the model parameters (e.g., fundamental matrix) and its quality while propagating the gradients through the entire procedure. The random sampler in $\nabla$-RANSAC is based on a clever re-parametrization strategy, i.e.\ the Gumbel Softmax sampler, that allows propagating the gradients directly into the subsequent differentiable minimal solver. The model quality function marginalizes over the scores from all models estimated within $\nabla$-RANSAC to guide the network learning accurate and useful probabilities.$\nabla$-RANSAC is the first to unlock the end-to-end training of geometric estimation pipelines, containing feature detection, matching and RANSAC-like randomized robust estimation. As a proof of its potential, we train $\nabla$-RANSAC together with LoFTR, i.e. a recent detector-free feature matcher, to find reliable correspondences in an end-to-end manner. We test $\nabla$-RANSAC on a number of real-world datasets on fundamental and essential matrix estimation. It is superior to the state-of-the-art in terms of accuracy while being among the fastest methods. The code and trained models will be made public.
Abstract:Cross entropy loss has served as the main objective function for classification-based tasks. Widely deployed for learning neural network classifiers, it shows both effectiveness and a probabilistic interpretation. Recently, after the success of self supervised contrastive representation learning methods, supervised contrastive methods have been proposed to learn representations and have shown superior and more robust performance, compared to solely training with cross entropy loss. However, cross entropy loss is still needed to train the final classification layer. In this work, we investigate the possibility of learning both the representation and the classifier using one objective function that combines the robustness of contrastive learning and the probabilistic interpretation of cross entropy loss. First, we revisit a previously proposed contrastive-based objective function that approximates cross entropy loss and present a simple extension to learn the classifier jointly. Second, we propose a new version of the supervised contrastive training that learns jointly the parameters of the classifier and the backbone of the network. We empirically show that our proposed objective functions show a significant improvement over the standard cross entropy loss with more training stability and robustness in various challenging settings.
Abstract:The classification of wound severity is a critical step in wound diagnosis. An effective classifier can help wound professionals categorize wound conditions more quickly and affordably, allowing them to choose the best treatment option. This study used wound photos to construct a deep neural network-based wound severity classifier that classified them into one of three classes: green, yellow, or red. The green class denotes wounds still in the early stages of healing and are most likely to recover with adequate care. Wounds in the yellow category require more attention and treatment than those in the green category. Finally, the red class denotes the most severe wounds that require prompt attention and treatment. A dataset containing different types of wound images is designed with the help of wound specialists. Nine deep learning models are used with applying the concept of transfer learning. Several stacked models are also developed by concatenating these transfer learning models. The maximum accuracy achieved on multi-class classification is 68.49%. In addition, we achieved 78.79%, 81.40%, and 77.57% accuracies on green vs. yellow, green vs. red, and yellow vs. red classifications for binary classifications.
Abstract:Wound classification is an essential step of wound diagnosis. An efficient classifier can assist wound specialists in classifying wound types with less financial and time costs and help them decide an optimal treatment procedure. This study developed a deep neural network-based multi-modal classifier using wound images and their corresponding locations to categorize wound images into multiple classes, including diabetic, pressure, surgical, and venous ulcers. A body map is also developed to prepare the location data, which can help wound specialists tag wound locations more efficiently. Three datasets containing images and their corresponding location information are designed with the help of wound specialists. The multi-modal network is developed by concatenating the image-based and location-based classifier's outputs with some other modifications. The maximum accuracy on mixed-class classifications (containing background and normal skin) varies from 77.33% to 100% on different experiments. The maximum accuracy on wound-class classifications (containing only diabetic, pressure, surgical, and venous) varies from 72.95% to 98.08% on different experiments. The proposed multi-modal network also shows a significant improvement in results from the previous works of literature.
Abstract:Direct optimization, by gradient descent, of an evaluation metric, is not possible when it is non-differentiable, which is the case for recall in retrieval. In this work, a differentiable surrogate loss for the recall is proposed. Using an implementation that sidesteps the hardware constraints of the GPU memory, the method trains with a very large batch size, which is essential for metrics computed on the entire retrieval database. It is assisted by an efficient mixup approach that operates on pairwise scalar similarities and virtually increases the batch size further. When used for deep metric learning, the proposed method achieves state-of-the-art results in several image retrieval benchmarks. For instance-level recognition, the method outperforms similar approaches that train using an approximation of average precision. The implementation will be made public.
Abstract:This paper proposes a procedure to robustly train a scene text recognition model using a learned surrogate of edit distance. The proposed method borrows from self-paced learning and filters out the training examples that are hard for the surrogate. The filtering is performed by judging the quality of the approximation, using a ramp function, which is piece-wise differentiable, enabling end-to-end training. Following the literature, the experiments are conducted in a post-tuning setup, where a trained scene text recognition model is tuned using the learned surrogate of edit distance. The efficacy is demonstrated by improvements on various challenging scene text datasets such as IIIT-5K, SVT, ICDAR, SVTP, and CUTE. The proposed method provides an average improvement of $11.2 \%$ on total edit distance and an error reduction of $9.5\%$ on accuracy.