Abstract:To explore a more scalable path for adding multimodal capabilities to existing LLMs, this paper addresses a fundamental question: Can a unimodal LLM, relying solely on text, reason about its own informational needs and provide effective feedback to optimize a multimodal model? To answer this, we propose a method that enables a language agent to give feedback to a vision-language model (VLM) to adapt text generation to the agent's preferences. Our results from different experiments affirm this hypothesis, showing that LLM preference feedback significantly enhances VLM descriptions. Using our proposed method, we find that the VLM can generate multimodal scene descriptions to help the LLM better understand multimodal context, leading to improvements of maximum 13% in absolute accuracy compared to the baseline multimodal approach. Furthermore, a human study validated our AI-driven feedback, showing a 64.6% preference alignment rate between the LLM's choices and human judgments. Extensive experiments provide insights on how and why the method works and its limitations.
Abstract:The virtual content in augmented reality (AR) can introduce misleading or harmful information, leading to semantic misunderstandings or user errors. In this work, we focus on visual information manipulation (VIM) attacks in AR where virtual content changes the meaning of real-world scenes in subtle but impactful ways. We introduce a taxonomy that categorizes these attacks into three formats: character, phrase, and pattern manipulation, and three purposes: information replacement, information obfuscation, and extra wrong information. Based on the taxonomy, we construct a dataset, AR-VIM. It consists of 452 raw-AR video pairs spanning 202 different scenes, each simulating a real-world AR scenario. To detect such attacks, we propose a multimodal semantic reasoning framework, VIM-Sense. It combines the language and visual understanding capabilities of vision-language models (VLMs) with optical character recognition (OCR)-based textual analysis. VIM-Sense achieves an attack detection accuracy of 88.94% on AR-VIM, consistently outperforming vision-only and text-only baselines. The system reaches an average attack detection latency of 7.07 seconds in a simulated video processing framework and 7.17 seconds in a real-world evaluation conducted on a mobile Android AR application.