Abstract:Zero-shot denoisers address the dataset dependency of deep-learning-based denoisers, enabling the denoising of unseen single images. Nonetheless, existing zero-shot methods suffer from long training times and rely on the assumption of noise independence and a zero-mean property, limiting their effectiveness in real-world denoising scenarios where noise characteristics are more complicated. This paper proposes an efficient and effective method for real-world denoising, the Zero-Shot denoiser based on Cross-Frequency Consistency (ZSCFC), which enables training and denoising with a single noisy image and does not rely on assumptions about noise distribution. Specifically, image textures exhibit position similarity and content consistency across different frequency bands, while noise does not. Based on this property, we developed cross-frequency consistency loss and an ultralight network to realize image denoising. Experiments on various real-world image datasets demonstrate that our ZSCFC outperforms other state-of-the-art zero-shot methods in terms of computational efficiency and denoising performance.
Abstract:Recent years have witnessed a broader range of applications of image processing technologies in multiple industrial processes, such as smoke detection, security monitoring, and workpiece inspection. Different kinds of distortion types and levels must be introduced into an image during the processes of acquisition, compression, transmission, storage, and display, which might heavily degrade the image quality and thus strongly reduce the final display effect and clarity. To verify the reliability of existing image quality assessment methods, we establish a new industrial process image database (IPID), which contains 3000 distorted images generated by applying different levels of distortion types to each of the 50 source images. We conduct the subjective test on the aforementioned 3000 images to collect their subjective quality ratings in a well-suited laboratory environment. Finally, we perform comparison experiments on IPID database to investigate the performance of some objective image quality assessment algorithms. The experimental results show that the state-of-the-art image quality assessment methods have difficulty in predicting the quality of images that contain multiple distortion types.