Abstract:Online change detection (OCD) aims to rapidly identify change points in streaming data and is critical in applications such as power system monitoring, wireless network sensing, and financial anomaly detection. Existing OCD methods typically assume precise system knowledge, which is unrealistic due to estimation errors and environmental variations. Moreover, existing OCD methods often struggle with efficiency in large-scale systems. To overcome these challenges, we propose RoS-Guard, a robust and optimal OCD algorithm tailored for linear systems with uncertainty. Through a tight relaxation and reformulation of the OCD optimization problem, RoS-Guard employs neural unrolling to enable efficient parallel computation via GPU acceleration. The algorithm provides theoretical guarantees on performance, including expected false alarm rate and worst-case average detection delay. Extensive experiments validate the effectiveness of RoS-Guard and demonstrate significant computational speedup in large-scale system scenarios.




Abstract:The primary goal of online change detection (OCD) is to promptly identify changes in the data stream. OCD problem find a wide variety of applications in diverse areas, e.g., security detection in smart grids and intrusion detection in communication networks. Prior research usually assumes precise knowledge of the parameters linked to the data stream. Nevertheless, this presumption often proves unattainable in practical scenarios due to factors such as estimation errors, system updates, etc. This paper aims to take the first attempt to develop a triadic-OCD framework with certifiable robustness, provable optimality, and guaranteed convergence. In addition, the proposed triadic-OCD algorithm can be realized in a fully asynchronous distributed manner, easing the necessity of transmitting the data to a single server. This asynchronous mechanism also could mitigate the straggler issue that faced by traditional synchronous algorithm. We then analyze the non-asymptotic convergence property of triadic-OCD and derive its iteration complexity to achieve an $\epsilon$-optimal point. Finally, extensive experiments have been conducted to elucidate the effectiveness of the proposed method.