Abstract:Large language models (LLMs) have emerged as promising general-purpose solvers for combinatorial optimization (CO), yet they fundamentally lack mechanisms to guarantee solution feasibility which is critical for real-world deployment. In this work, we introduce FALCON, a framework that ensures 100\% feasibility through three key innovations: (i) \emph{grammar-constrained decoding} enforces syntactic validity, (ii) a \emph{feasibility repair layer} corrects semantic constraint violations, and (iii) \emph{adaptive Best-of-$N$ sampling} allocates inference compute efficiently. To train the underlying LLM, we introduce the Best-anchored Objective-guided Preference Optimization (BOPO) in LLM training, which weights preference pairs by their objective gap, providing dense supervision without human labels. Theoretically, we prove convergence for BOPO and provide bounds on repair-induced quality loss. Empirically, across seven NP-hard CO problems, FALCON achieves perfect feasibility while matching or exceeding the solution quality of state-of-the-art neural and LLM-based solvers.




Abstract:Wide & Deep, a simple yet effective learning architecture for recommendation systems developed by Google, has had a significant impact in both academia and industry due to its combination of the memorization ability of generalized linear models and the generalization ability of deep models. Graph convolutional networks (GCNs) remain dominant in node classification tasks; however, recent studies have highlighted issues such as heterophily and expressiveness, which focus on graph structure while seemingly neglecting the potential role of node features. In this paper, we propose a flexible framework GCNIII, which leverages the Wide & Deep architecture and incorporates three techniques: Intersect memory, Initial residual and Identity mapping. We provide comprehensive empirical evidence showing that GCNIII can more effectively balance the trade-off between over-fitting and over-generalization on various semi- and full- supervised tasks. Additionally, we explore the use of large language models (LLMs) for node feature engineering to enhance the performance of GCNIII in cross-domain node classification tasks. Our implementation is available at https://github.com/CYCUCAS/GCNIII.