Abstract:Enabling a high-degree-of-freedom robot to learn specific skills is a challenging task due to the complexity of robotic dynamics. Reinforcement learning (RL) has emerged as a promising solution; however, addressing such problems requires the design of multiple reward functions to account for various constraints in robotic motion. Existing approaches typically sum all reward components indiscriminately to optimize the RL value function and policy. We argue that this uniform inclusion of all reward components in policy optimization is inefficient and limits the robot's learning performance. To address this, we propose an Automated Hybrid Reward Scheduling (AHRS) framework based on Large Language Models (LLMs). This paradigm dynamically adjusts the learning intensity of each reward component throughout the policy optimization process, enabling robots to acquire skills in a gradual and structured manner. Specifically, we design a multi-branch value network, where each branch corresponds to a distinct reward component. During policy optimization, each branch is assigned a weight that reflects its importance, and these weights are automatically computed based on rules designed by LLMs. The LLM generates a rule set in advance, derived from the task description, and during training, it selects a weight calculation rule from the library based on language prompts that evaluate the performance of each branch. Experimental results demonstrate that the AHRS method achieves an average 6.48% performance improvement across multiple high-degree-of-freedom robotic tasks.
Abstract:The ability to autonomously explore and resolve tasks with minimal human guidance is crucial for the self-development of embodied intelligence. Although reinforcement learning methods can largely ease human effort, it's challenging to design reward functions for real-world tasks, especially for high-dimensional robotic control, due to complex relationships among joints and tasks. Recent advancements large language models (LLMs) enable automatic reward function design. However, approaches evaluate reward functions by re-training policies from scratch placing an undue burden on the reward function, expecting it to be effective throughout the whole policy improvement process. We argue for a more practical strategy in robotic autonomy, focusing on refining existing policies with policy-dependent reward functions rather than a universal one. To this end, we propose a novel reward-policy co-evolution framework where the reward function and the learned policy benefit from each other's progressive on-the-fly improvements, resulting in more efficient and higher-performing skill acquisition. Specifically, the reward evolution process translates the robot's previous best reward function, descriptions of tasks and environment into text inputs. These inputs are used to query LLMs to generate a dynamic amount of reward function candidates, ensuring continuous improvement at each round of evolution. For policy evolution, our method generates new policy populations by hybridizing historically optimal and random policies. Through an improved Bayesian optimization, our approach efficiently and robustly identifies the most capable and plastic reward-policy combination, which then proceeds to the next round of co-evolution. Despite using less data, our approach demonstrates an average normalized improvement of 95.3% across various high-dimensional robotic skill learning tasks.