Abstract:Feature selection is essential for high-dimensional biomedical data, enabling stronger predictive performance, reduced computational cost, and improved interpretability in precision medicine applications. Existing approaches face notable challenges. Filter methods are highly scalable but cannot capture complex relationships or eliminate redundancy. Deep learning-based approaches can model nonlinear patterns but often lack stability, interpretability, and efficiency at scale. Single-head attention improves interpretability but is limited in capturing multi-level dependencies and remains sensitive to initialization, reducing reproducibility. Most existing methods rarely combine statistical interpretability with the representational power of deep learning, particularly in ultra-high-dimensional settings. Here, we introduce MAFS (Multi-head Attention-based Feature Selection), a hybrid framework that integrates statistical priors with deep learning capabilities. MAFS begins with filter-based priors for stable initialization and guide learning. It then uses multi-head attention to examine features from multiple perspectives in parallel, capturing complex nonlinear relationships and interactions. Finally, a reordering module consolidates outputs across attention heads, resolving conflicts and minimizing information loss to generate robust and consistent feature rankings. This design combines statistical guidance with deep modeling capacity, yielding interpretable importance scores while maximizing retention of informative signals. Across simulated and real-world datasets, including cancer gene expression and Alzheimer's disease data, MAFS consistently achieves superior coverage and stability compared with existing filter-based and deep learning-based alternatives, offering a scalable, interpretable, and robust solution for feature selection in high-dimensional biomedical data.
Abstract:Natural language processing models often face challenges due to limited labeled data, especially in domain specific areas, e.g., clinical trials. To overcome this, text augmentation techniques are commonly used to increases sample size by transforming the original input data into artificial ones with the label preserved. However, traditional text classification methods ignores the relationship between augmented texts and treats them as independent samples which may introduce classification error. Therefore, we propose a novel approach called 'Batch Aggregation' (BAGG) which explicitly models the dependence of text inputs generated through augmentation by incorporating an additional layer that aggregates results from correlated texts. Through studying multiple benchmark data sets across different domains, we found that BAGG can improve classification accuracy. We also found that the increase of performance with BAGG is more obvious in domain specific data sets, with accuracy improvements of up to 10-29%. Through the analysis of benchmark data, the proposed method addresses limitations of traditional techniques and improves robustness in text classification tasks. Our result demonstrates that BAGG offers more robust results and outperforms traditional approaches when training data is limited.