Abstract:We introduce Perceptual-Initialization (PI), a paradigm shift in visual representation learning that incorporates human perceptual structure during the initialization phase rather than as a downstream fine-tuning step. By integrating human-derived triplet embeddings from the NIGHTS dataset to initialize a CLIP vision encoder, followed by self-supervised learning on YFCC15M, our approach demonstrates significant zero-shot performance improvements, without any task-specific fine-tuning, across 29 zero shot classification and 2 retrieval benchmarks. On ImageNet-1K, zero-shot gains emerge after approximately 15 epochs of pretraining. Benefits are observed across datasets of various scales, with improvements manifesting at different stages of the pretraining process depending on dataset characteristics. Our approach consistently enhances zero-shot top-1 accuracy, top-5 accuracy, and retrieval recall (e.g., R@1, R@5) across these diverse evaluation tasks, without requiring any adaptation to target domains. These findings challenge the conventional wisdom of using human-perceptual data primarily for fine-tuning and demonstrate that embedding human perceptual structure during early representation learning yields more capable and vision-language aligned systems that generalize immediately to unseen tasks. Our work shows that "beginning with you", starting with human perception, provides a stronger foundation for general-purpose vision-language intelligence.
Abstract:In recent years, Large Language Models (LLM) have demonstrated impressive capabilities in the field of natural language processing (NLP). This paper explores the application of LLMs in negotiation transcript analysis by the Vanderbilt AI Negotiation Lab. Starting in September 2022, we applied multiple strategies using LLMs from zero shot learning to fine tuning models to in-context learning). The final strategy we developed is explained, along with how to access and use the model. This study provides a sense of both the opportunities and roadblocks for the implementation of LLMs in real life applications and offers a model for how LLMs can be applied to coding in other fields.