Abstract:In this paper, we study the efficacy and utility of recent advances in non-local, non-linear image interpolation and extrapolation algorithms, specifically, ideas based on Implicit Neural Representations (INR), as a tool for analysis of spatial transcriptomics data. We seek to utilize the microarray gene expression data sparsely sampled in the healthy human brain, and produce fully resolved spatial maps of any given gene across the whole brain at a voxel-level resolution. To do so, we first obtained the 100 top AD risk genes, whose baseline spatial transcriptional profiles were obtained from the Allen Human Brain Atlas (AHBA). We adapted Implicit Neural Representation models so that the pipeline can produce robust voxel-resolution quantitative maps of all genes. We present a variety of experiments using interpolations obtained from Abagen as a baseline/reference.
Abstract:Semantic feature norms have been foundational in the study of human conceptual knowledge, yet traditional methods face trade-offs between concept/feature coverage and verifiability of quality due to the labor-intensive nature of norming studies. Here, we introduce a novel approach that augments a dataset of human-generated feature norms with responses from large language models (LLMs) while verifying the quality of norms against reliable human judgments. We find that our AI-enhanced feature norm dataset, NOVA: Norms Optimized Via AI, shows much higher feature density and overlap among concepts while outperforming a comparable human-only norm dataset and word-embedding models in predicting people's semantic similarity judgments. Taken together, we demonstrate that human conceptual knowledge is richer than captured in previous norm datasets and show that, with proper validation, LLMs can serve as powerful tools for cognitive science research.