Abstract:During software front-end development, the work to convert Graphical User Interface(GUI) image to the corresponding front-end code is an inevitable tedious work. There have been some attempts to make this work to be automatic. However, the GUI code generated by these models is not accurate due to the lack of attention mechanism guidance. To solve this problem, we propose PixCoder based on an artificially supervised attention mechanism. The approach is to train a neural network to predict the style sheets in the input GUI image and then output a vector. PixCoder generate the GUI code targeting specific platform according to the output vector. The experimental results have shown the accuracy of the GUI code generated by PixCoder is over 95%.
Abstract:Online media outlets adopt clickbait techniques to lure readers to click on articles in a bid to expand their reach and subsequently increase revenue through ad monetization. As the adverse effects of clickbait attract more and more attention, researchers have started to explore machine learning techniques to automatically detect clickbaits. Previous work on clickbait detection assumes that all the training data is available locally during training. In many real-world applications, however, training data is generally distributedly stored by different parties (e.g., different parties maintain data with different feature spaces), and the parties cannot share their data with each other due to data privacy issues. It is challenging to build models of high-quality federally for detecting clickbaits effectively without data sharing. In this paper, we propose a federated training framework, which is called federated hierarchical hybrid networks, to build clickbait detection models, where the titles and contents are stored by different parties, whose relationships must be exploited for clickbait detection. We empirically demonstrate that our approach is effective by comparing our approach to the state-of-the-art approaches using datasets from social media.