Abstract:Leveraging Large Language Models (LLMs) for social simulation is a frontier in computational social science. Understanding the social logics these agents embody is critical to this attempt. However, existing research has primarily focused on cooperation in small-scale, task-oriented games, overlooking how altruism, which means sacrificing self-interest for collective benefit, emerges in large-scale agent societies. To address this gap, we introduce a Schelling-variant urban migration model that creates a social dilemma, compelling over 200 LLM agents to navigate an explicit conflict between egoistic (personal utility) and altruistic (system utility) goals. Our central finding is a fundamental difference in the social tendencies of LLMs. We identify two distinct archetypes: "Adaptive Egoists", which default to prioritizing self-interest but whose altruistic behaviors significantly increase under the influence of a social norm-setting message board; and "Altruistic Optimizers", which exhibit an inherent altruistic logic, consistently prioritizing collective benefit even at a direct cost to themselves. Furthermore, to qualitatively analyze the cognitive underpinnings of these decisions, we introduce a method inspired by Grounded Theory to systematically code agent reasoning. In summary, this research provides the first evidence of intrinsic heterogeneity in the egoistic and altruistic tendencies of different LLMs. We propose that for social simulation, model selection is not merely a matter of choosing reasoning capability, but of choosing an intrinsic social action logic. While "Adaptive Egoists" may offer a more suitable choice for simulating complex human societies, "Altruistic Optimizers" are better suited for modeling idealized pro-social actors or scenarios where collective welfare is the primary consideration.
Abstract:In recent years, significant progress has been made in developing more accurate and efficient machine learning algorithms for segmentation of medical and natural images. In this review article, we highlight the imperative role of machine learning algorithms in enabling efficient and accurate segmentation in the field of medical imaging. We specifically focus on several key studies pertaining to the application of machine learning methods to biomedical image segmentation. We review classical machine learning algorithms such as Markov random fields, k-means clustering, random forest, etc. Although such classical learning models are often less accurate compared to the deep learning techniques, they are often more sample efficient and have a less complex structure. We also review different deep learning architectures, such as the artificial neural networks (ANNs), the convolutional neural networks (CNNs), and the recurrent neural networks (RNNs), and present the segmentation results attained by those learning models that were published in the past three years. We highlight the successes and limitations of each machine learning paradigm. In addition, we discuss several challenges related to the training of different machine learning models, and we present some heuristics to address those challenges.