Abstract:Automated judgment document generation is a significant yet challenging legal AI task. As the conclusive written instrument issued by a court, a judgment document embodies complex legal reasoning. However, existing methods often oversimplify this complex process, particularly by omitting the ``Pre-Judge'' phase, a crucial step where human judges form a preliminary conclusion. This omission leads to two core challenges: 1) the ineffective acquisition of foundational judicial elements, and 2) the inadequate modeling of the Pre-Judge process, which collectively undermine the final document's legal soundness. To address these challenges, we propose \textit{\textbf{J}udicial \textbf{U}nified \textbf{S}ynthesis \textbf{T}hrough \textbf{I}ntermediate \textbf{C}onclusion \textbf{E}mulation} (JUSTICE), a novel framework that emulates the ``Search $\rightarrow$ Pre-Judge $\rightarrow$ Write'' cognitive workflow of human judges. Specifically, it introduces the Pre-Judge stage through three dedicated components: Referential Judicial Element Retriever (RJER), Intermediate Conclusion Emulator (ICE), and Judicial Unified Synthesizer (JUS). RJER first retrieves legal articles and a precedent case to establish a referential foundation. ICE then operationalizes the Pre-Judge phase by generating a verifiable intermediate conclusion. Finally, JUS synthesizes these inputs to craft the final judgment. Experiments on both an in-domain legal benchmark and an out-of-distribution dataset show that JUSTICE significantly outperforms strong baselines, with substantial gains in legal accuracy, including a 4.6\% improvement in prison term prediction. Our findings underscore the importance of explicitly modeling the Pre-Judge process to enhance the legal coherence and accuracy of generated judgment documents.