Abstract:Trajectory prediction is a fundamental technology for advanced autonomous driving systems and represents one of the most challenging problems in the field of cognitive intelligence. Accurately predicting the future trajectories of each traffic participant is a prerequisite for building high safety and high reliability decision-making, planning, and control capabilities in autonomous driving. However, existing methods often focus solely on the motion of other traffic participants without considering the underlying intent behind that motion, which increases the uncertainty in trajectory prediction. Autonomous vehicles operate in real-time environments, meaning that trajectory prediction algorithms must be able to process data and generate predictions in real-time. While many existing methods achieve high accuracy, they often struggle to effectively handle heterogeneous traffic scenarios. In this paper, we propose a Subjective Intent-based Low-latency framework for Multiple traffic participants joint trajectory prediction. Our method explicitly incorporates the subjective intent of traffic participants based on their key points, and predicts the future trajectories jointly without map, which ensures promising performance while significantly reducing the prediction latency. Additionally, we introduce a novel dataset designed specifically for trajectory prediction. Related code and dataset will be available soon.
Abstract:In the last twenty years, Structure from Motion (SfM) has been a constant research hotspot in the fields of photogrammetry, computer vision, robotics etc., whereas real-time performance is just a recent topic of growing interest. This work builds upon the original on-the-fly SfM (Zhan et al., 2024) and presents an updated version with three new advancements to get better 3D from what you capture: (i) real-time image matching is further boosted by employing the Hierarchical Navigable Small World (HNSW) graphs, thus more true positive overlapping image candidates are faster identified; (ii) a self-adaptive weighting strategy is proposed for robust hierarchical local bundle adjustment to improve the SfM results; (iii) multiple agents are included for supporting collaborative SfM and seamlessly merge multiple 3D reconstructions into a complete 3D scene when commonly registered images appear. Various comprehensive experiments demonstrate that the proposed SfM method (named on-the-fly SfMv2) can generate more complete and robust 3D reconstructions in a high time-efficient way. Code is available at http://yifeiyu225.github.io/on-the-flySfMv2.github.io/.