Abstract:Sparse superimposed coding (SSC) has emerged as a promising technique for short-packet transmission in ultra-reliable low-latency communication scenarios. However, conventional SSC schemes often suffer from high encoding and decoding complexity due to the use of dense codebook matrices. In this paper, we propose a low-complexity SSC scheme by designing a sparse codebook structure, where each codeword contains only a small number of non-zero elements. The decoding is performed using the traditional multipath matching pursuit algorithm, and the overall complexity is significantly reduced by exploiting the sparsity of the codebook. Simulation results show that the proposed scheme achieves a favorable trade-off between BLER performance and computational complexity, and exhibits strong robustness across different transmission block lengths.
Abstract:Sparse vector transmission (SVT) is a promising candidate technology for achieving ultra-reliable low-latency communication (URLLC). In this paper, a hierarchical SVT scheme is proposed for multi-user URLLC scenarios. The hierarchical SVT scheme partitions the transmitted bits into common and private parts. The common information is conveyed by the indices of non-zero sections in a sparse vector, while each user's private information is embedded into non-zero blocks with specific block lengths. At the receiver, the common bits are first recovered from the detected non-zero sections, followed by user-specific private bits decoding based on the corresponding non-zero block indices. Simulation results show the proposed scheme outperforms state-of-the-art SVT schemes in terms of block error rate.