Sparse vector transmission (SVT) is a promising candidate technology for achieving ultra-reliable low-latency communication (URLLC). In this paper, a hierarchical SVT scheme is proposed for multi-user URLLC scenarios. The hierarchical SVT scheme partitions the transmitted bits into common and private parts. The common information is conveyed by the indices of non-zero sections in a sparse vector, while each user's private information is embedded into non-zero blocks with specific block lengths. At the receiver, the common bits are first recovered from the detected non-zero sections, followed by user-specific private bits decoding based on the corresponding non-zero block indices. Simulation results show the proposed scheme outperforms state-of-the-art SVT schemes in terms of block error rate.