Abstract:Ensuring grid stability in the transition to renewable energy sources requires accurate power demand forecasting. This study addresses the need for precise forecasting by differentiating among industrial, commercial, and residential consumers through customer clusterisation, tailoring the forecasting models to capture the unique consumption patterns of each group. A feature selection process is done for each consumer type including temporal, socio-economic, and weather-related data obtained from the Copernicus Earth Observation (EO) program. A variety of AI and machine learning algorithms for Short-Term Load Forecasting (STLF) and Very Short-Term Load Forecasting (VSTLF) are explored and compared, determining the most effective approaches. With all that, the main contribution of this work are the new forecasting approaches proposed, which have demonstrated superior performance compared to simpler models, both for STLF and VSTLF, highlighting the importance of customized forecasting strategies for different consumer groups and demonstrating the impact of incorporating detailed weather data on forecasting accuracy. These advancements contribute to more reliable power demand predictions, thereby supporting grid stability.
Abstract:Scheduling problems pose significant challenges in resource, industry, and operational management. This paper addresses the Unrelated Parallel Machine Scheduling Problem (UPMS) with setup times and resources using a Multi-Agent Reinforcement Learning (MARL) approach. The study introduces the Reinforcement Learning environment and conducts empirical analyses, comparing MARL with Single-Agent algorithms. The experiments employ various deep neural network policies for single- and Multi-Agent approaches. Results demonstrate the efficacy of the Maskable extension of the Proximal Policy Optimization (PPO) algorithm in Single-Agent scenarios and the Multi-Agent PPO algorithm in Multi-Agent setups. While Single-Agent algorithms perform adequately in reduced scenarios, Multi-Agent approaches reveal challenges in cooperative learning but a scalable capacity. This research contributes insights into applying MARL techniques to scheduling optimization, emphasizing the need for algorithmic sophistication balanced with scalability for intelligent scheduling solutions.