Abstract:Ensuring grid stability in the transition to renewable energy sources requires accurate power demand forecasting. This study addresses the need for precise forecasting by differentiating among industrial, commercial, and residential consumers through customer clusterisation, tailoring the forecasting models to capture the unique consumption patterns of each group. A feature selection process is done for each consumer type including temporal, socio-economic, and weather-related data obtained from the Copernicus Earth Observation (EO) program. A variety of AI and machine learning algorithms for Short-Term Load Forecasting (STLF) and Very Short-Term Load Forecasting (VSTLF) are explored and compared, determining the most effective approaches. With all that, the main contribution of this work are the new forecasting approaches proposed, which have demonstrated superior performance compared to simpler models, both for STLF and VSTLF, highlighting the importance of customized forecasting strategies for different consumer groups and demonstrating the impact of incorporating detailed weather data on forecasting accuracy. These advancements contribute to more reliable power demand predictions, thereby supporting grid stability.
Abstract:Recent evidence suggests that SARS-CoV-2, which is the virus causing a global pandemic in 2020, is predominantly transmitted via airborne aerosols in indoor environments. This calls for novel strategies when assessing and controlling a building's indoor air quality (IAQ). IAQ can generally be controlled by ventilation and/or policies to regulate human-building-interaction. However, in a building, occupants use rooms in different ways, and it may not be obvious which measure or combination of measures leads to a cost- and energy-effective solution ensuring good IAQ across the entire building. Therefore, in this article, we introduce a novel agent-based simulator, ArchABM, designed to assist in creating new or adapt existing buildings by estimating adequate room sizes, ventilation parameters and testing the effect of policies while taking into account IAQ as a result of complex human-building interaction patterns. A recently published aerosol model was adapted to calculate time-dependent carbon dioxide ($CO_2$) and virus quanta concentrations in each room and inhaled $CO_2$ and virus quanta for each occupant over a day as a measure of physiological response. ArchABM is flexible regarding the aerosol model and the building layout due to its modular architecture, which allows implementing further models, any number and size of rooms, agents, and actions reflecting human-building interaction patterns. We present a use case based on a real floor plan and working schedules adopted in our research center. This study demonstrates how advanced simulation tools can contribute to improving IAQ across a building, thereby ensuring a healthy indoor environment.