Abstract:Unmanned Ground Vehicles (UGVs) are emerging as a crucial tool in the world of precision agriculture. The combination of UGVs with machine learning allows us to find solutions for a range of complex agricultural problems. This research focuses on developing a UGV capable of autonomously traversing agricultural fields and capturing data. The project, known as AGRO (Autonomous Ground Rover Observer) leverages machine learning, computer vision and other sensor technologies. AGRO uses its capabilities to determine pistachio yields, performing self-localization and real-time environmental mapping while avoiding obstacles. The main objective of this research work is to automate resource-consuming operations so that AGRO can support farmers in making data-driven decisions. Furthermore, AGRO provides a foundation for advanced machine learning techniques as it captures the world around it.
Abstract:Research in the field of malware classification often relies on machine learning models that are trained on high-level features, such as opcodes, function calls, and control flow graphs. Extracting such features is costly, since disassembly or code execution is generally required. In this paper, we conduct experiments to train and evaluate machine learning models for malware classification, based on features that can be obtained without disassembly or execution of code. Specifically, we visualize malware samples as images and employ image analysis techniques. In this context, we focus on two machine learning models, namely, Convolutional Neural Networks (CNN) and Extreme Learning Machines (ELM). Surprisingly, we find that ELMs can achieve accuracies on par with CNNs, yet ELM training requires less than~2\%\ of the time needed to train a comparable CNN.