Abstract:The EUNIS habitat classification is crucial for categorising European habitats, supporting European policy on nature conservation and implementing the Nature Restoration Law. To meet the growing demand for detailed and accurate habitat information, we provide spatial predictions for 260 EUNIS habitat types at hierarchical level 3, together with independent validation and uncertainty analyses. Using ensemble machine learning models, together with high-resolution satellite imagery and ecologically meaningful climatic, topographic and edaphic variables, we produced a European habitat map indicating the most probable EUNIS habitat at 100-m resolution across Europe. Additionally, we provide information on prediction uncertainty and the most probable habitats at level 3 within each EUNIS level 1 formation. This product is particularly useful for both conservation and restoration purposes. Predictions were cross-validated at European scale using a spatial block cross-validation and evaluated against independent data from France (forests only), the Netherlands and Austria. The habitat maps obtained strong predictive performances on the validation datasets with distinct trade-offs in terms of recall and precision across habitat formations.
Abstract:Constraint-based and noise-based methods have been proposed to discover summary causal graphs from observational time series under strong assumptions which can be violated or impossible to verify in real applications. Recently, a hybrid method (Assaad et al, 2021) that combines these two approaches, proved to be robust to assumption violation. However, this method assumes that the summary causal graph is acyclic, but cycles are common in many applications. For example, in ecological communities, there may be cyclic relationships between predator and prey populations, creating feedback loops. Therefore, this paper presents two new frameworks for hybrids of constraint-based and noise-based methods that can discover summary causal graphs that may or may not contain cycles. For each framework, we provide two hybrid algorithms which are experimentally tested on simulated data, realistic ecological data, and real data from various applications. Experiments show that our hybrid approaches are robust and yield good results over most datasets.