Abstract:Frequent node and link changes in edge AI clusters disrupt distributed training, while traditional checkpoint-based recovery and cloud-centric autoscaling are too slow for scale-out and ill-suited to chaotic and self-governed edge. This paper proposes Chaos, a resilient and scalable edge distributed training system with built-in self-healing and autoscaling. It speeds up scale-out by using multi-neighbor replication with fast shard scheduling, allowing a new node to pull the latest training state from nearby neighbors in parallel while balancing the traffic load between them. It also uses a cluster monitor to track resource and topology changes to assist scheduler decisions, and handles scaling events through peer negotiation protocols, enabling fully self-governed autoscaling without a central admin. Extensive experiments show that Chaos consistently achieves much lower scale-out delays than Pollux, EDL, and Autoscaling, and handles scale-in, connect-link, and disconnect-link events within 1 millisecond, making it smoother to handle node joins, exits, and failures. It also delivers the lowest idle time, showing superior resource use and scalability as the cluster grows.
Abstract:Large model inference is shifting from cloud to edge due to concerns about the privacy of user interaction data. However, edge devices often struggle with limited computing power, memory, and bandwidth, requiring collaboration across multiple devices to run and speed up LLM inference. Pipeline parallelism, the mainstream solution, is inefficient for single-user scenarios, while tensor parallelism struggles with frequent communications. In this paper, we argue that tensor parallelism can be more effective than pipeline on low-resource devices, and present a compute- and memory-efficient tensor parallel inference system, named TPI-LLM, to serve 70B-scale models. TPI-LLM keeps sensitive raw data local in the users' devices and introduces a sliding window memory scheduler to dynamically manage layer weights during inference, with disk I/O latency overlapped with the computation and communication. This allows larger models to run smoothly on memory-limited devices. We analyze the communication bottleneck and find that link latency, not bandwidth, emerges as the main issue, so a star-based allreduce algorithm is implemented. Through extensive experiments on both emulated and real testbeds, TPI-LLM demonstrated over 80% less time-to-first-token and token latency compared to Accelerate, and over 90% compared to Transformers and Galaxy, while cutting the peak memory footprint of Llama 2-70B by 90%, requiring only 3.1 GB of memory for 70B-scale models.