Abstract:Typhoon trajectory forecasting is essential for disaster preparedness but remains computationally demanding due to the complexity of atmospheric dynamics and the resource requirements of deep learning models. Quantum-Train (QT), a hybrid quantum-classical framework that leverages quantum neural networks (QNNs) to generate trainable parameters exclusively during training, eliminating the need for quantum hardware at inference time. Building on QT's success across multiple domains, including image classification, reinforcement learning, flood prediction, and large language model (LLM) fine-tuning, we introduce Quantum Parameter Adaptation (QPA) for efficient typhoon forecasting model learning. Integrated with an Attention-based Multi-ConvGRU model, QPA enables parameter-efficient training while maintaining predictive accuracy. This work represents the first application of quantum machine learning (QML) to large-scale typhoon trajectory prediction, offering a scalable and energy-efficient approach to climate modeling. Our results demonstrate that QPA significantly reduces the number of trainable parameters while preserving performance, making high-performance forecasting more accessible and sustainable through hybrid quantum-classical learning.
Abstract:Quantum Approximate Optimization Algorithms (QAOA) promise efficient solutions to classically intractable combinatorial optimization problems by harnessing shallow-depth quantum circuits. Yet, their performance and scalability often hinge on effective parameter optimization, which remains nontrivial due to rugged energy landscapes and hardware noise. In this work, we introduce a quantum meta-learning framework that combines quantum neural networks, specifically Quantum Long Short-Term Memory (QLSTM) architectures, with QAOA. By training the QLSTM optimizer on smaller graph instances, our approach rapidly generalizes to larger, more complex problems, substantially reducing the number of iterations required for convergence. Through comprehensive benchmarks on Max-Cut and Sherrington-Kirkpatrick model instances, we demonstrate that QLSTM-based optimizers converge faster and achieve higher approximation ratios compared to classical baselines, thereby offering a robust pathway toward scalable quantum optimization in the NISQ era.