Abstract:Self-supervised learning (SSL) methods have been increasingly applied to diverse downstream tasks due to their superior generalization capabilities and low annotation costs. However, most existing heterogeneous graph SSL models convert heterogeneous graphs into homogeneous ones via meta-paths for training, which only leverage information from nodes at both ends of meta-paths while underutilizing the heterogeneous node information along the meta-paths. To address this limitation, this paper proposes a novel framework named IMPA-HGAE to enhance target node embeddings by fully exploiting internal node information along meta-paths. Experimental results validate that IMPA-HGAE achieves superior performance on heterogeneous datasets. Furthermore, this paper introduce innovative masking strategies to strengthen the representational capacity of generative SSL models on heterogeneous graph data. Additionally, this paper discuss the interpretability of the proposed method and potential future directions for generative self-supervised learning in heterogeneous graphs. This work provides insights into leveraging meta-path-guided structural semantics for robust representation learning in complex graph scenarios.
Abstract:In graph self-supervised learning, masked autoencoders (MAE) and contrastive learning (CL) are two prominent paradigms. MAE focuses on reconstructing masked elements, while CL maximizes similarity between augmented graph views. Recent studies highlight their complementarity: MAE excels at local feature capture, and CL at global information extraction. Hybrid frameworks for homogeneous graphs have been proposed, but face challenges in designing shared encoders to meet the semantic requirements of both tasks. In semantically sparse scenarios, CL struggles with view construction, and gradient imbalance between positive and negative samples persists. This paper introduces HetCRF, a novel dual-channel self-supervised learning framework for heterogeneous graphs. HetCRF uses a two-stage aggregation strategy to adapt embedding semantics, making it compatible with both MAE and CL. To address semantic sparsity, it enhances encoder output for view construction instead of relying on raw features, improving efficiency. Two positive sample augmentation strategies are also proposed to balance gradient contributions. Node classification experiments on four real-world heterogeneous graph datasets demonstrate that HetCRF outperforms state-of-the-art baselines. On datasets with missing node features, such as Aminer and Freebase, at a 40% label rate in node classification, HetCRF improves the Macro-F1 score by 2.75% and 2.2% respectively compared to the second-best baseline, validating its effectiveness and superiority.