Abstract:Clustering patient subgroups is essential for personalized care and efficient resource use. Traditional clustering methods struggle with high-dimensional, heterogeneous healthcare data and lack contextual understanding. This study evaluates Large Language Model (LLM) based clustering against classical methods using a pediatric sepsis dataset from a low-income country (LIC), containing 2,686 records with 28 numerical and 119 categorical variables. Patient records were serialized into text with and without a clustering objective. Embeddings were generated using quantized LLAMA 3.1 8B, DeepSeek-R1-Distill-Llama-8B with low-rank adaptation(LoRA), and Stella-En-400M-V5 models. K-means clustering was applied to these embeddings. Classical comparisons included K-Medoids clustering on UMAP and FAMD-reduced mixed data. Silhouette scores and statistical tests evaluated cluster quality and distinctiveness. Stella-En-400M-V5 achieved the highest Silhouette Score (0.86). LLAMA 3.1 8B with the clustering objective performed better with higher number of clusters, identifying subgroups with distinct nutritional, clinical, and socioeconomic profiles. LLM-based methods outperformed classical techniques by capturing richer context and prioritizing key features. These results highlight potential of LLMs for contextual phenotyping and informed decision-making in resource-limited settings.
Abstract:Despite notable results on standard aerial datasets, current state-of-the-arts fail to produce accurate building footprints in dense areas due to challenging properties posed by these areas and limited data availability. In this paper, we propose a framework to address such issues in polygonal building extraction. First, super resolution is employed to enhance the spatial resolution of aerial image, allowing for finer details to be captured. This enhanced imagery serves as input to a multitask learning module, which consists of a segmentation head and a frame field learning head to effectively handle the irregular building structures. Our model is supervised by adaptive loss weighting, enabling extraction of sharp edges and fine-grained polygons which is difficult due to overlapping buildings and low data quality. Extensive experiments on a slum area in India that mimics a dense area demonstrate that our proposed approach significantly outperforms the current state-of-the-art methods by a large margin.