Abstract:[...] Since then, various APR approaches, especially those leveraging the power of large language models (LLMs), have been rapidly developed to fix general software bugs. Unfortunately, the effectiveness of these advanced techniques in the context of regression bugs remains largely unexplored. This gap motivates the need for an empirical study evaluating the effectiveness of modern APR techniques in fixing real-world regression bugs. In this work, we conduct an empirical study of APR techniques on Java regression bugs. To facilitate our study, we introduce RegMiner4APR, a high-quality benchmark of Java regression bugs integrated into a framework designed to facilitate APR research. The current benchmark includes 99 regression bugs collected from 32 widely used real-world Java GitHub repositories. We begin by conducting an in-depth analysis of the benchmark, demonstrating its diversity and quality. Building on this foundation, we empirically evaluate the capabilities of APR to regression bugs by assessing both traditional APR tools and advanced LLM-based APR approaches. Our experimental results show that classical APR tools fail to repair any bugs, while LLM-based APR approaches exhibit promising potential. Motivated by these results, we investigate impact of incorporating bug-inducing change information into LLM-based APR approaches for fixing regression bugs. Our results highlight that this context-aware enhancement significantly improves the performance of LLM-based APR, yielding 1.8x more successful repairs compared to using LLM-based APR without such context.
Abstract:Despite notable results on standard aerial datasets, current state-of-the-arts fail to produce accurate building footprints in dense areas due to challenging properties posed by these areas and limited data availability. In this paper, we propose a framework to address such issues in polygonal building extraction. First, super resolution is employed to enhance the spatial resolution of aerial image, allowing for finer details to be captured. This enhanced imagery serves as input to a multitask learning module, which consists of a segmentation head and a frame field learning head to effectively handle the irregular building structures. Our model is supervised by adaptive loss weighting, enabling extraction of sharp edges and fine-grained polygons which is difficult due to overlapping buildings and low data quality. Extensive experiments on a slum area in India that mimics a dense area demonstrate that our proposed approach significantly outperforms the current state-of-the-art methods by a large margin.