Abstract:India, as a predominantly agrarian economy, faces significant challenges in agriculture, including substantial crop losses caused by diseases, pests, and environmental stress. Early detection and accurate identification of diseases across different crops are critical for improving yield and ensuring food security. This paper proposes a deep learning based solution for detecting multiple diseases in multiple crops, aimed to cover India's diverse agricultural landscape. We first create a unified dataset encompassing images of 17 different crops and 34 different diseases from various available repositories. Proposed deep learning model is trained on this dataset and outperforms the state-of-the-art in terms of accuracy and the number of crops, diseases covered. We achieve a significant detection accuracy, i.e., 99 percent for our unified dataset which is 7 percent more when compared to state-of-the-art handling 14 crops and 26 different diseases only. By improving the number of crops and types of diseases that can be detected, proposed solution aims to provide a better product for Indian farmers.
Abstract:Deep Learning (DL) , a variant of the neural network algorithms originally proposed in the 1980s, has made surprising progress in Artificial Intelligence (AI), ranging from language translation, protein folding, autonomous cars, and more recently human-like language models (CHATbots), all that seemed intractable until very recently. Despite the growing use of Deep Learning (DL) networks, little is actually understood about the learning mechanisms and representations that makes these networks effective across such a diverse range of applications. Part of the answer must be the huge scale of the architecture and of course the large scale of the data, since not much has changed since 1987. But the nature of deep learned representations remain largely unknown. Unfortunately training sets with millions or billions of tokens have unknown combinatorics and Networks with millions or billions of hidden units cannot easily be visualized and their mechanisms cannot be easily revealed. In this paper, we explore these questions with a large (1.24M weights; VGG) DL in a novel high density sample task (5 unique tokens with at minimum 500 exemplars per token) which allows us to more carefully follow the emergence of category structure and feature construction. We use various visualization methods for following the emergence of the classification and the development of the coupling of feature detectors and structures that provide a type of graphical bootstrapping, From these results we harvest some basic observations of the learning dynamics of DL and propose a new theory of complex feature construction based on our results.