Abstract:Recent work has proposed using Large Language Models (LLMs) to quantify narrative flow through a measure called sequentiality, which combines topic and contextual terms. A recent critique argued that the original results were confounded by how topics were selected for the topic-based component, and noted that the metric had not been validated against ground-truth measures of flow. That work proposed using only the contextual term as a more conceptually valid and interpretable alternative. In this paper, we empirically validate that proposal. Using two essay datasets with human-annotated trait scores, ASAP++ and ELLIPSE, we show that the contextual version of sequentiality aligns more closely with human assessments of discourse-level traits such as Organization and Cohesion. While zero-shot prompted LLMs predict trait scores more accurately than the contextual measure alone, the contextual measure adds more predictive value than both the topic-only and original sequentiality formulations when combined with standard linguistic features. Notably, this combination also outperforms the zero-shot LLM predictions, highlighting the value of explicitly modeling sentence-to-sentence flow. Our findings support the use of context-based sequentiality as a validated, interpretable, and complementary feature for automated essay scoring and related NLP tasks.
Abstract:Understanding the factors that determine video memorability has important applications in areas such as educational technology and advertising. Towards this goal, we investigate the semantic and temporal attention mechanisms underlying video memorability. We propose a Transformer-based model with spatio-temporal attention that matches SoTA performance on video memorability prediction on a large naturalistic video dataset. More importantly, the self-attention patterns show us where the model looks to predict memorability. We compare model attention against human gaze fixation density maps collected through a small-scale eye-tracking experiment where humans perform a video memory task. Quantitative saliency metrics show that the model attention and human gaze follow similar patterns. Furthermore, while panoptic segmentation confirms that the model and humans attend more to thing classes, stuff classes that receive increased/decreased attention tend to have higher memorability scores. We also observe that the model assigns greater importance to the initial frames, mimicking temporal attention patterns found in humans.