Abstract:Modern network intrusion detection systems (NIDS) frequently utilize the predictive power of complex deep learning models. However, the "black-box" nature of such deep learning methods adds a layer of opaqueness that hinders the proper understanding of detection decisions, trust in the decisions and prevent timely countermeasures against such attacks. Explainable AI (XAI) methods provide a solution to this problem by providing insights into the causes of the predictions. The majority of the existing XAI methods provide explanations which are not convenient to convert into actionable countermeasures. In this work, we propose a novel diffusion-based counterfactual explanation framework that can provide actionable explanations for network intrusion attacks. We evaluated our proposed algorithm against several other publicly available counterfactual explanation algorithms on 3 modern network intrusion datasets. To the best of our knowledge, this work also presents the first comparative analysis of existing counterfactual explanation algorithms within the context of network intrusion detection systems. Our proposed method provide minimal, diverse counterfactual explanations out of the tested counterfactual explanation algorithms in a more efficient manner by reducing the time to generate explanations. We also demonstrate how counterfactual explanations can provide actionable explanations by summarizing them to create a set of global rules. These rules are actionable not only at instance level but also at the global level for intrusion attacks. These global counterfactual rules show the ability to effectively filter out incoming attack queries which is crucial for efficient intrusion detection and defense mechanisms.
Abstract:This research provides an in-depth evaluation of various machine learning models for energy forecasting, focusing on the unique challenges of seasonal variations in student residential settings. The study assesses the performance of baseline models, such as LSTM and GRU, alongside state-of-the-art forecasting methods, including Autoregressive Feedforward Neural Networks, Transformers, and hybrid approaches. Special attention is given to predicting energy consumption amidst challenges like seasonal patterns, vacations, meteorological changes, and irregular human activities that cause sudden fluctuations in usage. The findings reveal that no single model consistently outperforms others across all seasons, emphasizing the need for season-specific model selection or tailored designs. Notably, the proposed Hyper Network based LSTM and MiniAutoEncXGBoost models exhibit strong adaptability to seasonal variations, effectively capturing abrupt changes in energy consumption during summer months. This study advances the energy forecasting field by emphasizing the critical role of seasonal dynamics and model-specific behavior in achieving accurate predictions.