Abstract:Air pollution monitoring is a very popular research topic and many monitoring systems have been developed. In this paper, we formulate the Bus Sensor Deployment Problem (BSDP) to select the bus routes on which sensors are deployed, and we use Chemical Reaction Optimization (CRO) to solve BSDP. CRO is a recently proposed metaheuristic designed to solve a wide range of optimization problems. Using the real world data, namely Hong Kong Island bus route data, we perform a series of simulations and the results show that CRO is capable of solving this optimization problem efficiently.
Abstract:Chemical Reaction Optimization (CRO) is a powerful metaheuristic which mimics the interactions of molecules in chemical reactions to search for the global optimum. The perturbation function greatly influences the performance of CRO on solving different continuous problems. In this paper, we study four different probability distributions, namely, the Gaussian distribution, the Cauchy distribution, the exponential distribution, and a modified Rayleigh distribution, for the perturbation function of CRO. Different distributions have different impacts on the solutions. The distributions are tested by a set of well-known benchmark functions and simulation results show that problems with different characteristics have different preference on the distribution function. Our study gives guidelines to design CRO for different types of optimization problems.
Abstract:Evolutionary algorithms (EAs) are very popular tools to design and evolve artificial neural networks (ANNs), especially to train them. These methods have advantages over the conventional backpropagation (BP) method because of their low computational requirement when searching in a large solution space. In this paper, we employ Chemical Reaction Optimization (CRO), a newly developed global optimization method, to replace BP in training neural networks. CRO is a population-based metaheuristics mimicking the transition of molecules and their interactions in a chemical reaction. Simulation results show that CRO outperforms many EA strategies commonly used to train neural networks.