Digital and Integrated Systems, Alstom
Abstract:Track circuits are critical for railway operations, acting as the main signalling sub-system to locate trains. Continuous Variable Current Modulation (CVCM) is one such technology. Like any field-deployed, safety-critical asset, it can fail, triggering cascading disruptions. Many failures originate as subtle anomalies that evolve over time, often not visually apparent in monitored signals. Conventional approaches, which rely on clear signal changes, struggle to detect them early. Early identification of failure types is essential to improve maintenance planning, minimising downtime and revenue loss. Leveraging deep neural networks, we propose a predictive maintenance framework that classifies anomalies well before they escalate into failures. Validated on 10 CVCM failure cases across different installations, the method is ISO-17359 compliant and outperforms conventional techniques, achieving 99.31% overall accuracy with detection within 1% of anomaly onset. Through conformal prediction, we provide uncertainty estimates, reaching 99% confidence with consistent coverage across classes. Given CVCMs global deployment, the approach is scalable and adaptable to other track circuits and railway systems, enhancing operational reliability.
Abstract:We propose to design and build an algorithm that will use a Convolutional Neural Network (CNN) and observations from the Unistellar network to reliably detect asteroid occultations. The Unistellar Network, made of more than 10,000 digital telescopes owned by citizen scientists, and is regularly used to record asteroid occultations. In order to process the increasing amount of observational produced by this network, we need a quick and reliable way to analyze occultations. In an effort to solve this problem, we trained a CNN with artificial images of stars with twenty different types of photometric signals. Inputs to the network consists of two stacks of snippet images of stars, one around the star that is supposed to be occulted and a reference star used for comparison. We need the reference star to distinguish between a true occultation and artefacts introduced by poor atmospheric condition. Our Occultation Detection Neural Network (ODNet), can analyze three sequence of stars per second with 91\% of precision and 87\% of recall. The algorithm is sufficiently fast and robust so we can envision incorporating onboard the eVscopes to deliver real-time results. We conclude that citizen science represents an important opportunity for the future studies and discoveries in the occultations, and that application of artificial intelligence will permit us to to take better advantage of the ever-growing quantity of data to categorize asteroids.