Abstract:When robots perform complex and context-dependent tasks in our daily lives, deviations from expectations can confuse users. Explanations of the robot's reasoning process can help users to understand the robot intentions. However, when to provide explanations and what they contain are important to avoid user annoyance. We have investigated user preferences for explanation demand and content for a robot that helps with daily cleaning tasks in a kitchen. Our results show that users want explanations in surprising situations and prefer concise explanations that clearly state the intention behind the confusing action and the contextual factors that were relevant to this decision. Based on these findings, we propose two algorithms to identify surprising actions and to construct effective explanations for Belief-Desire-Intention (BDI) robots. Our algorithms can be easily integrated in the BDI reasoning process and pave the way for better human-robot interaction with context- and user-specific explanations.
Abstract:With the increasing complexity of CPSs, their behavior and decisions become increasingly difficult to understand and comprehend for users and other stakeholders. Our vision is to build self-explainable systems that can, at run-time, answer questions about the system's past, current, and future behavior. As hitherto no design methodology or reference framework exists for building such systems, we propose the MAB-EX framework for building self-explainable systems that leverage requirements- and explainability models at run-time. The basic idea of MAB-EX is to first Monitor and Analyze a certain behavior of a system, then Build an explanation from explanation models and convey this EXplanation in a suitable way to a stakeholder. We also take into account that new explanations can be learned, by updating the explanation models, should new and yet un-explainable behavior be detected by the system.