Abstract:Photonic surfaces designed with specific optical characteristics are becoming increasingly important for use in in various energy harvesting and storage systems. , In this study, we develop a surrogate-based optimization approach for designing such surfaces. The surrogate-based optimization framework employs the Random Forest algorithm and uses a greedy, prediction-based exploration strategy to identify the laser fabrication parameters that minimize the discrepancy relative to a user-defined target optical characteristics. We demonstrate the approach on two synthetic benchmarks and two specific cases of photonic surface inverse design targets. It exhibits superior performance when compared to other optimization algorithms across all benchmarks. Additionally, we demonstrate a technique of inverse design warm starting for changed target optical characteristics which enhances the performance of the introduced approach.
Abstract:We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces, trained on a dataset of 11,759 samples that we fabricate using high throughput femtosecond laser processing. The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization. The combined MF ensemble can generate multiple disparate sets of laser-processing parameters that can each produce the same target input spectral emissivity with high accuracy (root mean squared errors < 2%). SHapley Additive exPlanations analysis shows transparent model interpretability of the complex relationship between laser parameters and spectral emissivity. Finally, the MF ensemble is experimentally validated by fabricating and evaluating photonic surface designs that it generates for improved efficiency energy harvesting devices. Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications.