Abstract:Gaze may enhance the robustness of lie detectors but remains under-studied. This study evaluated the efficacy of AI models (using fixations, saccades, blinks, and pupil size) for detecting deception in Concealed Information Tests across two datasets. The first, collected with Eyelink 1000, contains gaze data from a computerized experiment where 87 participants revealed, concealed, or faked the value of a previously selected card. The second, collected with Pupil Neon, involved 36 participants performing a similar task but facing an experimenter. XGBoost achieved accuracies up to 74% in a binary classification task (Revealing vs. Concealing) and 49% in a more challenging three-classification task (Revealing vs. Concealing vs. Faking). Feature analysis identified saccade number, duration, amplitude, and maximum pupil size as the most important for deception prediction. These results demonstrate the feasibility of using gaze and AI to enhance lie detectors and encourage future research that may improve on this.
Abstract:Malaria remains a significant global health challenge, necessitating rapid and accurate diagnostic methods. While computer-aided diagnosis (CAD) tools utilizing deep learning have shown promise, their generalization to diverse clinical settings remains poorly assessed. This study evaluates the generalization capabilities of a CAD model for malaria diagnosis from thin blood smear images across four sites. We explore strategies to enhance generalization, including fine-tuning and incremental learning. Our results demonstrate that incorporating site-specific data significantly improves model performance, paving the way for broader clinical application.