Abstract:Low-order linear System IDentification (SysID) addresses the challenge of estimating the parameters of a linear dynamical system from finite samples of observations and control inputs with minimal state representation. Traditional approaches often utilize Hankel-rank minimization, which relies on convex relaxations that can require numerous, costly singular value decompositions (SVDs) to optimize. In this work, we propose two nonconvex reformulations to tackle low-order SysID (i) Burer-Monterio (BM) factorization of the Hankel matrix for efficient nuclear norm minimization, and (ii) optimizing directly over system parameters for real, diagonalizable systems with an atomic norm style decomposition. These reformulations circumvent the need for repeated heavy SVD computations, significantly improving computational efficiency. Moreover, we prove that optimizing directly over the system parameters yields lower statistical error rates, and lower sample complexities that do not scale linearly with trajectory length like in Hankel-nuclear norm minimization. Additionally, while our proposed formulations are nonconvex, we provide theoretical guarantees of achieving global optimality in polynomial time. Finally, we demonstrate algorithms that solve these nonconvex programs and validate our theoretical claims on synthetic data.
Abstract:We propose a general framework for deriving generalization bounds for parallel positively homogeneous neural networks--a class of neural networks whose input-output map decomposes as the sum of positively homogeneous maps. Examples of such networks include matrix factorization and sensing, single-layer multi-head attention mechanisms, tensor factorization, deep linear and ReLU networks, and more. Our general framework is based on linking the non-convex empirical risk minimization (ERM) problem to a closely related convex optimization problem over prediction functions, which provides a global, achievable lower-bound to the ERM problem. We exploit this convex lower-bound to perform generalization analysis in the convex space while controlling the discrepancy between the convex model and its non-convex counterpart. We apply our general framework to a wide variety of models ranging from low-rank matrix sensing, to structured matrix sensing, two-layer linear networks, two-layer ReLU networks, and single-layer multi-head attention mechanisms, achieving generalization bounds with a sample complexity that scales almost linearly with the network width.