Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Good arm identification (GAI) is a pure-exploration bandit problem in which a single learner outputs an arm as soon as it is identified as a good arm. A good arm is defined as an arm with an expected reward greater than or equal to a given threshold. This paper focuses on the GAI problem under a small threshold gap, which refers to the distance between the expected rewards of arms and the given threshold. We propose a new algorithm called lil'HDoC to significantly improve the total sample complexity of the HDoC algorithm. We demonstrate that the sample complexity of the first $\lambda$ output arm in lil'HDoC is bounded by the original HDoC algorithm, except for one negligible term, when the distance between the expected reward and threshold is small. Extensive experiments confirm that our algorithm outperforms the state-of-the-art algorithms in both synthetic and real-world datasets.

Via

Figures and Tables:

Abstract:This paper targets a variant of the stochastic multi-armed bandit problem called good arm identification (GAI). GAI is a pure-exploration bandit problem with the goal to output as many good arms using as few samples as possible, where a good arm is defined as an arm whose expected reward is greater than a given threshold. In this work, we propose DGAI - a differentiable good arm identification algorithm to improve the sample complexity of the state-of-the-art HDoC algorithm in a data-driven fashion. We also showed that the DGAI can further boost the performance of a general multi-arm bandit (MAB) problem given a threshold as a prior knowledge to the arm set. Extensive experiments confirm that our algorithm outperform the baseline algorithms significantly in both synthetic and real world datasets for both GAI and MAB tasks.

Via