Abstract:Tracking multiple objects based on textual queries is a challenging task that requires linking language understanding with object association across frames. Previous works typically train the whole process end-to-end or integrate an additional referring text module into a multi-object tracker, but they both require supervised training and potentially struggle with generalization to open-set queries. In this work, we introduce ReferGPT, a novel zero-shot referring multi-object tracking framework. We provide a multi-modal large language model (MLLM) with spatial knowledge enabling it to generate 3D-aware captions. This enhances its descriptive capabilities and supports a more flexible referring vocabulary without training. We also propose a robust query-matching strategy, leveraging CLIP-based semantic encoding and fuzzy matching to associate MLLM generated captions with user queries. Extensive experiments on Refer-KITTI, Refer-KITTIv2 and Refer-KITTI+ demonstrate that ReferGPT achieves competitive performance against trained methods, showcasing its robustness and zero-shot capabilities in autonomous driving. The codes are available on https://github.com/Tzoulio/ReferGPT
Abstract:Autonomous aerial monitoring is an important task aimed at gathering information from areas that may not be easily accessible by humans. At the same time, this task often requires recognizing anomalies from a significant distance or not previously encountered in the past. In this paper, we propose a novel framework that leverages the advanced capabilities provided by Large Language Models (LLMs) to actively collect information and perform anomaly detection in novel scenes. To this end, we propose an LLM based model dialogue approach, in which two deep learning models engage in a dialogue to actively control a drone to increase perception and anomaly detection accuracy. We conduct our experiments in a high fidelity simulation environment where an LLM is provided with a predetermined set of natural language movement commands mapped into executable code functions. Additionally, we deploy a multimodal Visual Question Answering (VQA) model charged with the task of visual question answering and captioning. By engaging the two models in conversation, the LLM asks exploratory questions while simultaneously flying a drone into different parts of the scene, providing a novel way to implement active perception. By leveraging LLMs reasoning ability, we output an improved detailed description of the scene going beyond existing static perception approaches. In addition to information gathering, our approach is utilized for anomaly detection and our results demonstrate the proposed methods effectiveness in informing and alerting about potential hazards.