Abstract:Recent advances in large language models (LLMs) have significantly enhanced question-answering (QA) capabilities, particularly in open-domain contexts. However, in closed-domain scenarios such as education, healthcare, and law, users demand not only accurate answers but also transparent reasoning and explainable decision-making processes. While neural-symbolic (NeSy) frameworks have emerged as a promising solution, leveraging LLMs for natural language understanding and symbolic systems for formal reasoning, existing approaches often rely on large-scale models and exhibit inefficiencies in translating natural language into formal logic representations. To address these limitations, we introduce Text-JEPA (Text-based Joint-Embedding Predictive Architecture), a lightweight yet effective framework for converting natural language into first-order logic (NL2FOL). Drawing inspiration from dual-system cognitive theory, Text-JEPA emulates System 1 by efficiently generating logic representations, while the Z3 solver operates as System 2, enabling robust logical inference. To rigorously evaluate the NL2FOL-to-reasoning pipeline, we propose a comprehensive evaluation framework comprising three custom metrics: conversion score, reasoning score, and Spearman rho score, which collectively capture the quality of logical translation and its downstream impact on reasoning accuracy. Empirical results on domain-specific datasets demonstrate that Text-JEPA achieves competitive performance with significantly lower computational overhead compared to larger LLM-based systems. Our findings highlight the potential of structured, interpretable reasoning frameworks for building efficient and explainable QA systems in specialized domains.
Abstract:This paper presents a deep learning-based system for efficient automatic case summarization. Leveraging state-of-the-art natural language processing techniques, the system offers both supervised and unsupervised methods to generate concise and relevant summaries of lengthy legal case documents. The user-friendly interface allows users to browse the system's database of legal case documents, select their desired case, and choose their preferred summarization method. The system generates comprehensive summaries for each subsection of the legal text as well as an overall summary. This demo streamlines legal case document analysis, potentially benefiting legal professionals by reducing workload and increasing efficiency. Future work will focus on refining summarization techniques and exploring the application of our methods to other types of legal texts.