Abstract:This paper investigates the privacy and usability of AI-enabled smart devices commonly used by youth, focusing on Google Home Mini, Amazon Alexa, and Apple Siri. While these devices provide convenience and efficiency, they also raise privacy and transparency concerns due to their always-listening design and complex data management processes. The study proposes and applies a combined framework of Heuristic Evaluation, Personal Information Protection and Electronic Documents Act (PIPEDA) Compliance Assessment, and Youth-Centered Usability Testing to assess whether these devices align with Privacy-by-Design principles and support meaningful user control. Results show that Google Home achieved the highest usability score, while Siri scored highest in regulatory compliance, indicating a trade-off between user convenience and privacy protection. Alexa demonstrated clearer task navigation but weaker transparency in data retention. Findings suggest that although youth may feel capable of managing their data, their privacy self-efficacy remains limited by technical design, complex settings, and unclear data policies. The paper concludes that enhancing transparency, embedding privacy guidance during onboarding, and improving policy alignment are critical steps toward ensuring that smart devices are both usable and compliant with privacy standards that protect young users.
Abstract:Smart voice assistants (SVAs) are embedded in the daily lives of youth, yet their privacy controls often remain opaque and difficult to manage. Through five semi-structured focus groups (N=26) with young Canadians (ages 16-24), we investigate how perceived privacy risks (PPR) and benefits (PPBf) intersect with algorithmic transparency and trust (ATT) and privacy self-efficacy (PSE) to shape privacy-protective behaviors (PPB). Our analysis reveals that policy overload, fragmented settings, and unclear data retention undermine self-efficacy and discourage protective actions. Conversely, simple transparency cues were associated with greater confidence without diminishing the utility of hands-free tasks and entertainment. We synthesize these findings into a qualitative model in which transparency friction erodes PSE, which in turn weakens PPB. From this model, we derive actionable design guidance for SVAs, including a unified privacy hub, plain-language "data nutrition" labels, clear retention defaults, and device-conditional micro-tutorials. This work foregrounds youth perspectives and offers a path for SVA governance and design that empowers young digital citizens while preserving convenience.