Abstract:Quadratic Unconstrained Binary Optimization (QUBO)-based suppression in object detection is known to have superiority to conventional Non-Maximum Suppression (NMS), especially for crowded scenes where NMS possibly suppresses the (partially-) occluded true positives with low confidence scores. Whereas existing QUBO formulations are less likely to miss occluded objects than NMS, there is room for improvement because existing QUBO formulations naively consider confidence scores and pairwise scores based on spatial overlap between predictions. This study proposes new QUBO formulations that aim to distinguish whether the overlap between predictions is due to the occlusion of objects or due to redundancy in prediction, i.e., multiple predictions for a single object. The proposed QUBO formulation integrates two features into the pairwise score of the existing QUBO formulation: i) the appearance feature calculated by the image similarity metric and ii) the product of confidence scores. These features are derived from the hypothesis that redundant predictions share a similar appearance feature and (partially-) occluded objects have low confidence scores, respectively. The proposed methods demonstrate significant advancement over state-of-the-art QUBO-based suppression without a notable increase in runtime, achieving up to 4.54 points improvement in mAP and 9.89 points gain in mAR.
Abstract:Deep learning models are vulnerable to adversarial examples, and adversarial attacks used to generate such examples have attracted considerable research interest. Although existing methods based on the steepest descent have achieved high attack success rates, ill-conditioned problems occasionally reduce their performance. To address this limitation, we utilize the conjugate gradient (CG) method, which is effective for this type of problem, and propose a novel attack algorithm inspired by the CG method, named the Auto Conjugate Gradient (ACG) attack. The results of large-scale evaluation experiments conducted on the latest robust models show that, for most models, ACG was able to find more adversarial examples with fewer iterations than the existing SOTA algorithm Auto-PGD (APGD). We investigated the difference in search performance between ACG and APGD in terms of diversification and intensification, and define a measure called Diversity Index (DI) to quantify the degree of diversity. From the analysis of the diversity using this index, we show that the more diverse search of the proposed method remarkably improves its attack success rate.