Abstract:Large language models (LLMs) excel across many tasks, yet inference is still dominated by strictly token-by-token autoregression. Existing acceleration methods largely patch this pipeline and miss core human-reading ingredients: content-adaptive foresight, chunk-structure-aware compute allocation, and train--test consistency for preview/skimming. We propose the \textbf{Fovea-Block-Skip Transformer} (FBS), which injects a causal, trainable loop into Transformers via Parafovea-Attention Window (PAW), Chunk-Head (CH), and Skip-Gate (SG). Across diverse benchmarks, FBS improves the quality-efficiency trade-off without increasing parameters, and ablations show the three modules are complementary.
Abstract:Real-world reinforcement learning often faces environment drift, but most existing methods rely on static entropy coefficients/target entropy, causing over-exploration during stable periods and under-exploration after drift (thus slow recovery), and leaving unanswered the principled question of how exploration intensity should scale with drift magnitude. We prove that entropy scheduling under non-stationarity can be reduced to a one-dimensional, round-by-round trade-off, faster tracking of the optimal solution after drift vs. avoiding gratuitous randomness when the environment is stable, so exploration strength can be driven by measurable online drift signals. Building on this, we propose AES (Adaptive Entropy Scheduling), which adaptively adjusts the entropy coefficient/temperature online using observable drift proxies during training, requiring almost no structural changes and incurring minimal overhead. Across 4 algorithm variants, 12 tasks, and 4 drift modes, AES significantly reduces the fraction of performance degradation caused by drift and accelerates recovery after abrupt changes.