Abstract:Automated epileptic seizure detection from electroencephalogram (EEG) remains challenging due to significant individual differences in EEG patterns across patients. While existing studies achieve high accuracy with patient-specific approaches, they face difficulties in generalizing to new patients. To address this, we propose a detection framework combining domain adversarial training with a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). First, the CNN extracts local patient-invariant features through domain adversarial training, which optimizes seizure detection accuracy while minimizing patient-specific characteristics. Then, the BiLSTM captures temporal dependencies in the extracted features to model seizure evolution patterns. Evaluation using EEG recordings from 20 patients with focal epilepsy demonstrated superior performance over non-adversarial methods, achieving high detection accuracy across different patients. The integration of adversarial training with temporal modeling enables robust cross-patient seizure detection.
Abstract:In this paper, we propose a time-series stochastic model based on a scale mixture distribution with Markov transitions to detect epileptic seizures in electroencephalography (EEG). In the proposed model, an EEG signal at each time point is assumed to be a random variable following a Gaussian distribution. The covariance matrix of the Gaussian distribution is weighted with a latent scale parameter, which is also a random variable, resulting in the stochastic fluctuations of covariances. By introducing a latent state variable with a Markov chain in the background of this stochastic relationship, time-series changes in the distribution of latent scale parameters can be represented according to the state of epileptic seizures. In an experiment, we evaluated the performance of the proposed model for seizure detection using EEGs with multiple frequency bands decomposed from a clinical dataset. The results demonstrated that the proposed model can detect seizures with high sensitivity and outperformed several baselines.