Abstract:Automated epileptic seizure detection from electroencephalogram (EEG) remains challenging due to significant individual differences in EEG patterns across patients. While existing studies achieve high accuracy with patient-specific approaches, they face difficulties in generalizing to new patients. To address this, we propose a detection framework combining domain adversarial training with a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). First, the CNN extracts local patient-invariant features through domain adversarial training, which optimizes seizure detection accuracy while minimizing patient-specific characteristics. Then, the BiLSTM captures temporal dependencies in the extracted features to model seizure evolution patterns. Evaluation using EEG recordings from 20 patients with focal epilepsy demonstrated superior performance over non-adversarial methods, achieving high detection accuracy across different patients. The integration of adversarial training with temporal modeling enables robust cross-patient seizure detection.