Abstract:It is assumed that sparse autoencoders (SAEs) decompose polysemantic activations into interpretable linear directions, as long as the activations are composed of sparse linear combinations of underlying features. However, we find that if an SAE is more narrow than the number of underlying "true features" on which it is trained, and there is correlation between features, the SAE will merge components of correlated features together, thus destroying monosemanticity. In LLM SAEs, these two conditions are almost certainly true. This phenomenon, which we call feature hedging, is caused by SAE reconstruction loss, and is more severe the narrower the SAE. In this work, we introduce the problem of feature hedging and study it both theoretically in toy models and empirically in SAEs trained on LLMs. We suspect that feature hedging may be one of the core reasons that SAEs consistently underperform supervised baselines. Finally, we use our understanding of feature hedging to propose an improved variant of matryoshka SAEs. Our work shows there remain fundamental issues with SAEs, but we are hopeful that that highlighting feature hedging will catalyze future advances that allow SAEs to achieve their full potential of interpreting LLMs at scale.
Abstract:Sparse Autoencoders (SAEs) have emerged as a promising approach to decompose the activations of Large Language Models (LLMs) into human-interpretable latents. In this paper, we pose two questions. First, to what extent do SAEs extract monosemantic and interpretable latents? Second, to what extent does varying the sparsity or the size of the SAE affect monosemanticity / interpretability? By investigating these questions in the context of a simple first-letter identification task where we have complete access to ground truth labels for all tokens in the vocabulary, we are able to provide more detail than prior investigations. Critically, we identify a problematic form of feature-splitting we call feature absorption where seemingly monosemantic latents fail to fire in cases where they clearly should. Our investigation suggests that varying SAE size or sparsity is insufficient to solve this issue, and that there are deeper conceptual issues in need of resolution.