Abstract:Models trained on tabular data are widely used in sensitive domains, increasing the demand for explanation methods to meet transparency needs. CFIRE is a recent algorithm in this domain that constructs compact surrogate rule models from local explanations. While effective, CFIRE may assign rules associated with different classes to the same sample, introducing ambiguity. We investigate this ambiguity and propose a post-hoc pruning strategy that removes rules with low contribution or conflicting coverage, yielding smaller and less ambiguous models while preserving fidelity. Experiments across multiple datasets confirm these improvements with minimal impact on predictive performance.
Abstract:We present an outline of the first large language model (LLM) based chatbot application in the context of patient-reported outcome measures (PROMs) for diabetic retinopathy. By utilizing the capabilities of current LLMs, we enable patients to provide feedback about their quality of life and treatment progress via an interactive application. The proposed framework offers significant advantages over the current approach, which encompasses only qualitative collection of survey data or a static survey with limited answer options. Using the PROBot LLM-PROM application, patients will be asked tailored questions about their individual challenges, and can give more detailed feedback on the progress of their treatment. Based on this input, we will use machine learning to infer conventional PROM scores, which can be used by clinicians to evaluate the treatment status. The goal of the application is to improve adherence to the healthcare system and treatments, and thus ultimately reduce cases of subsequent vision impairment. The approach needs to be further validated using a survey and a clinical study.