Abstract:Teachers' visual attention and its distribution across the students in classrooms can constitute important implications for student engagement, achievement, and professional teacher training. Despite that, inferring the information about where and which student teachers focus on is not trivial. Mobile eye tracking can provide vital help to solve this issue; however, the use of mobile eye tracking alone requires a significant amount of manual annotations. To address this limitation, we present an automated processing pipeline concept that requires minimal manually annotated data to recognize which student the teachers focus on. To this end, we utilize state-of-the-art face detection models and face recognition feature embeddings to train face recognition models with transfer learning in the classroom context and combine these models with the teachers' gaze from mobile eye trackers. We evaluated our approach with data collected from four different classrooms, and our results show that while it is possible to estimate the visually focused students with reasonable performance in all of our classroom setups, U-shaped and small classrooms led to the best results with accuracies of approximately 0.7 and 0.9, respectively. While we did not evaluate our method for teacher-student interactions and focused on the validity of the technical approach, as our methodology does not require a vast amount of manually annotated data and offers a non-intrusive way of handling teachers' visual attention, it could help improve instructional strategies, enhance classroom management, and provide feedback for professional teacher development.
Abstract:The ability for a teacher to engage all students in active learning processes in classroom constitutes a crucial prerequisite for enhancing students achievement. Teachers' attentional processes provide important insights into teachers' ability to focus their attention on relevant information in the complexity of classroom interaction and distribute their attention across students in order to recognize the relevant needs for learning. In this context, mobile eye tracking is an innovative approach within teaching effectiveness research to capture teachers' attentional processes while teaching. However, analyzing mobile eye-tracking data by hand is time consuming and still limited. In this paper, we introduce a new approach to enhance the impact of mobile eye tracking by connecting it with computer vision. In mobile eye tracking videos from an educational study using a standardized small group situation, we apply a state-ofthe-art face detector, create face tracklets, and introduce a novel method to cluster faces into the number of identity. Subsequently, teachers' attentional focus is calculated per student during a teaching unit by associating eye tracking fixations and face tracklets. To the best of our knowledge, this is the first work to combine computer vision and mobile eye tracking to model teachers' attention while instructing.