Abstract:Quantum machine learning (QML) seeks to exploit the intrinsic properties of quantum mechanical systems, including superposition, coherence, and quantum entanglement for classical data processing. However, due to the exponential growth of the Hilbert space, QML faces practical limits in classical simulations with the state-vector representation of quantum system. On the other hand, phase-space methods offer an alternative by encoding quantum states as quasi-probability functions. Building on prior work in qubit phase-space and the Stratonovich-Weyl (SW) correspondence, we construct a closed, composable dynamical formalism for one- and many-qubit systems in phase-space. This formalism replaces the operator algebra of the Pauli group with function dynamics on symplectic manifolds, and recasts the curse of dimensionality in terms of harmonic support on a domain that scales linearly with the number of qubits. It opens a new route for QML based on variational modelling over phase-space.
Abstract:Understanding and characterising quantum many-body dynamics remains a significant challenge due to both the exponential complexity required to represent quantum many-body Hamiltonians, and the need to accurately track states in time under the action of such Hamiltonians. This inherent complexity limits our ability to characterise quantum many-body systems, highlighting the need for innovative approaches to unlock their full potential. To address this challenge, we propose a novel method to solve the Hamiltonian Learning (HL) problem-inferring quantum dynamics from many-body state trajectories-using Neural Differential Equations combined with an Ansatz Hamiltonian. Our method is reliably convergent, experimentally friendly, and interpretable, making it a stable solution for HL on a set of Hamiltonians previously unlearnable in the literature. In addition to this, we propose a new quantitative benchmark based on power laws, which can objectively compare the reliability and generalisation capabilities of any two HL algorithms. Finally, we benchmark our method against state-of-the-art HL algorithms with a 1D spin-1/2 chain proof of concept.