Abstract:We present a systematic approach for evaluating the quality of knowledge graph repairs with respect to constraint violations defined in shapes constraint language (SHACL). Current evaluation methods rely on \emph{ad hoc} datasets, which limits the rigorous analysis of repair systems in more general settings. Our method addresses this gap by systematically generating violations using a novel mechanism, termed violation-inducing operations (VIOs). We use the proposed evaluation framework to assess a range of repair systems which we build using large language models. We analyze the performance of these systems across different prompting strategies. Results indicate that concise prompts containing both the relevant violated SHACL constraints and key contextual information from the knowledge graph yield the best performance.
Abstract:As more distributed energy resources become part of the demand-side infrastructure, it is important to quantify the energy flexibility they provide on a community scale, particularly to understand the impact of geographic, climatic, and occupant behavioral differences on their effectiveness, as well as identify the best control strategies to accelerate their real-world adoption. CityLearn provides an environment for benchmarking simple and advanced distributed energy resource control algorithms including rule-based, model-predictive, and reinforcement learning control. CityLearn v2 presented here extends CityLearn v1 by providing a simulation environment that leverages the End-Use Load Profiles for the U.S. Building Stock dataset to create virtual grid-interactive communities for resilient, multi-agent distributed energy resources and objective control with dynamic occupant feedback. This work details the v2 environment design and provides application examples that utilize reinforcement learning to manage battery energy storage system charging/discharging cycles, vehicle-to-grid control, and thermal comfort during heat pump power modulation.