Abstract:With the recent rapid advancement of mega low earth orbit (LEO) satellite constellations, multi-antenna gateway station (MAGS) has emerged as a key enabler to support extremely high system capacity via massive feeder links. However, the densification of both space and ground segment leads to reduced spatial separation between links, posing unprecedented challenges of interference exacerbation. This paper investigates graph coloring-based frequency allocation methods for interference mitigation (IM) of mega LEO systems. We first reveal the characteristics of MAGS interference pattern and formulate the IM problem into a $K$-coloring problem using an adaptive threshold method. Then we propose two tailored graph coloring algorithms, namely Generalized Global (GG) and Clique-Based Tabu Search (CTS), to solve this problem. GG employs a low-complexity greedy conflict avoidance strategy, while CTS leverages the unique clique structure brought by MAGSs to enhance IM performance. Subsequently, we innovatively modify them to achieve time-continuous frequency allocation, which is crucial to ensure the stability of feeder links. Moreover, we further devise two mega constellation decomposition methods to alleviate the complexity burden of satellite operators. Finally, we propose a list coloring-based vacant subchannel utilization method to further improve spectrum efficiency and system capacity. Simulation results on Starlink constellation of the first and second generations with 34396 satellites demonstrate the effectiveness and superiority of the proposed methodology.
Abstract:This paper investigates the uplink channel estimation of the millimeter-wave (mmWave) extremely large-scale multiple-input-multiple-output (XL-MIMO) communication system in the beam-delay domain, taking into account the near-field and beam-squint effects due to the transmission bandwidth and array aperture growth. Specifically, we model the sparsity in the delay domain to explore inter-subcarrier correlations and propose the beam-delay domain sparse representation of spatial-frequency domain channels. The independent and non-identically distributed Bernoulli-Gaussian models with unknown prior hyperparameters are employed to capture the sparsity in the beam-delay domain, posing a challenge for channel estimation. Under the constrained Bethe free energy minimization framework, we design different structures on the beliefs to develop hybrid message passing (HMP) algorithms, thus achieving efficient joint estimation of beam-delay domain channel and prior hyperparameters. To further improve the model accuracy, the multidimensional grid point perturbation (MDGPP)-based representation is presented, which assigns individual perturbation parameters to each multidimensional discrete grid. By treating the MDGPP parameters as unknown hyperparameters, we propose the two-stage HMP algorithm for MDGPP-based channel estimation, where the output of the initial estimation stage is pruned for the refinement stage for the computational complexity reduction. Numerical simulations demonstrate the significant superiority of the proposed algorithms over benchmarks with both near-field and beam-squint effects.