Abstract:In the world where big data reigns and there is plenty of hardware prepared to gather a huge amount of non structured data, data acquisition is no longer a problem. Surveillance cameras are ubiquitous and they capture huge numbers of people walking across different scenes. However, extracting value from this data is challenging, specially for tasks that involve human images, such as face recognition and person re-identification. Annotation of this kind of data is a challenging and expensive task. In this work we propose a domain adaptation workflow to allow CNNs that were trained in one domain to be applied to another domain without the need for new annotation of the target data. Our method uses AlignedReID++ as the baseline, trained using a Triplet loss with batch hard. Domain adaptation is done by using pseudo-labels generated using an unsupervised learning strategy. Our results show that domain adaptation techniques really improve the performance of the CNN when applied in the target domain.
Abstract:Unsupervised Domain Adaptation (UDA) methods for person Re-Identification (Re-ID) rely on target domain samples to model the marginal distribution of the data. To deal with the lack of target domain labels, UDA methods leverage information from labeled source samples and unlabeled target samples. A promising approach relies on the use of unsupervised learning as part of the pipeline, such as clustering methods. The quality of the clusters clearly plays a major role in methods performance, but this point has been overlooked. In this work, we propose a multi-step pseudo-label refinement method to select the best possible clusters and keep improving them so that these clusters become closer to the class divisions without knowledge of the class labels. Our refinement method includes a cluster selection strategy and a camera-based normalization method which reduces the within-domain variations caused by the use of multiple cameras in person Re-ID. This allows our method to reach state-of-the-art UDA results on DukeMTMC-Market1501 (source-target). We surpass state-of-the-art for UDA Re-ID by 3.4% on Market1501-DukeMTMC datasets, which is a more challenging adaptation setup because the target domain (DukeMTMC) has eight distinct cameras. Furthermore, the camera-based normalization method causes a significant reduction in the number of iterations required for training convergence.